Konstrukcija maksimalno balansirane povezane particije u grafu (Structure of maximally balanced connected partition in graph)

Abstract

Implementacije mnogih metoda diskretne matematike, posebice teorije grafova i teorije kompleksnih mreža, te metode rudarstva podataka, imaju važnu ulogu u rješavanju NP – teških problema iz područja kombinatorne optimizacije. Dosadašnja istraživanja su pokazala kako značajnu ulogu o ovim problemima imaju istraživanja važnosti pojedinog vrha unutar grafa, te konstruiranje maksimalno balansirane particije u grafu. Takvi problemi u praksi nisu rijetki, ali nisu ni predmet istraživanja isključivo matematičara, već ih izučavaju i istraživači iz drugih područja znanosti, inženjerstva, ekonomije, obrazovanja. – The implementation of various discrete mathematics methods, especially graphs, complex network theory, and the data mining methods, play an important role in solving NP–difficult problems in the field of combinatorial optimization. Previous research has shown that these issues are greatly influenced by study of the importance of a single vertex within the graph, and the design of maximally balanced connected partitions in graph. These problems are not rare in practice, and are not studied solely by mathematicians, but also by researches from other areas of science, engineering, economy, and education.

Publication
Proceedings of the 5th Conference of Young Researchers – COMMON FOUNDATIONS 2017, University of Zagreb, Faculty of Civil Engineering, Zagreb, Croatia, September 18–19, 2017
Date

DOI:

https://doi.org/10.5592/CO/ZT.2017.22